The extreme value of local dimension of convolution of the cantor measure

DSpace/Manakin Repository

The extreme value of local dimension of convolution of the cantor measure

Show simple item record


dc.contributor.author Vu, Thi Hong Thanh
dc.contributor.author et al.
dc.date.accessioned 2011-06-08T13:06:18Z
dc.date.available 2011-06-08T13:06:18Z
dc.date.issued 2009
dc.identifier.citation 57-68 vi
dc.identifier.issn 0866-8612
dc.identifier.uri http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/11960
dc.description.abstract Let $\mu$ be the $m-$fold convolution of the standard Cantor measure and $\underline{\alpha}_m$ be the lower extreme value of the local dimension of the measure $\mu$. The values of $\underline{\alpha}_m$ for $m=2,3,4$ were showed in [4] and [5]. In this paper, we show that $$\underline{\alpha}_5=|\frac{\log \big[\frac{2}{3.2^5}\big(\sqrt{145}\cos(\frac{\arccos\frac{427}{59\sqrt{145}}}{3})+5\big)\big]}{\log 3}|\approx 0.972638.$$ This values was estimated by P. Shmerkin in [5], but it has not been proved. vi
dc.language.iso en vi
dc.publisher Tap chi Khoa hoc vi
dc.subject Local dimension, probability measure, standard Cantor measure. vi
dc.title The extreme value of local dimension of convolution of the cantor measure vi
dc.type Article vi

Files in this item

Files Size Format View
bai7.pdf 176.5Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account