Periodic solutions of some linear evolution systems of natural differential equations on 2-dimensional tore

DSpace/Manakin Repository

Periodic solutions of some linear evolution systems of natural differential equations on 2-dimensional tore

Show simple item record


dc.contributor.author Dang, Khanh Hoi
dc.date.accessioned 2011-06-08T16:40:02Z
dc.date.available 2011-06-08T16:40:02Z
dc.date.issued 2010
dc.identifier.citation 17-27 vi
dc.identifier.issn 0866-8612
dc.identifier.uri http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/12343
dc.description.abstract In this paper we study periodic solutions of the equation \begin{equation}\label{a} \frac{1}{i}\left( \frac{\partial}{\partial t}+aA \right)u(x,t)=\nu G (u-f), \end{equation} with conditions \begin{equation}\label{b} u_{t=0}=u_{t=b}, \,\, \int_X (u(x),1) \, dx =0 \end{equation} over a Riemannian manifold $X$, where $$G u(x,t)=\int_Xg(x,y)u(y)dy $$ is an integral operator, $u(x,t)$ is a differential form on $X,$ $A=i(d+\delta)$ is a natural differential operator in $X$. We consider the case when $X$ is a tore $\Pi^2$. It is shown that the set of parameters $(\nu, b)$ for which the above problem admits a unique solution is a measurable set of complete measure in ${\Bbb C}\times {\Bbb R}^+.$ vi
dc.language.iso en vi
dc.publisher Tạp chí Khoa học vi
dc.subject Natural differential operators, small denominators, spectrum of compact operators. vi
dc.title Periodic solutions of some linear evolution systems of natural differential equations on 2-dimensional tore vi
dc.type Article vi

Files in this item

Files Size Format View
3.pdf 707.5Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account